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Abstract

Infinitesimal probability has long occupied a prominent niche in
the philosophy of probability. It has been employed for such purposes
as defending the principle of regularity, making sense of rational belief
update upon learning evidence of classical probability 0, modeling fair
infinite lotteries, and applying decision theory in infinitary contexts.
In this paper, I show that many of the philosophical purposes infinites-
imal probability has been enlisted to serve can be served more simply
and perspicuously by appealing instead to qualitative probability—
that is, the binary relation of one event’s being at least as probable
as another event. I also that show that qualitative probability has
comparable (if not greater) representational power than infinitesimal
probability. These considerations suggest that qualitative probability
provides a superior framework to infinitesimal probability for theoriz-
ing about a variety of philosophical contexts.

1 Introduction

A (positive) infinitesimal is a number that is ‘infinitely smaller’ than any pos-
itive real number yet is still positive. More precisely, an infinitesimal x is a
positive number such that, for any positive real number y, there is no natural
number n such that y < nx. Probability functions that can take on infinites-
imal values have been employed for a number of philosophical purposes—to
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defend the principle of regularity (Lewis [1980], Skyrms [1980]), to make
sense of rational belief update upon learning evidence of classical probability
0 (Lewis [1980], Skyrms [1980]), to model fair infinite lotteries (Wenmackers
and Horsten [2013]), to apply decision theory in infinitary contexts (Hájek
[2003a], Pivato [2014]), to measure objective chance (Lewis [1986], Hofweber
[2014]), among others.

Although the use of infinitesimal probability to serve these purposes has
been met with a fair amount of criticism,1 I will not add to the criticisms or
defenses in this paper. My main aim is simply to show that we don’t need
infinitesimal probability to serve many of these purposes. We can serve them
more simply and perspicuously by appealing instead to qualitative probabil-
ity—that is, the binary relation of one event’s being at least as probable as
another event.2 As a result, critics of infinitesimal probability may find qual-
itative probability to be an attractive alternative framework for theorizing
about infinitary probabilistic scenarios.

Another aim of this paper is to demonstrate the extraordinary representa-
tional power of qualitative probability. Although it is commonly thought—as,
for example, Meacham and Weisberg [2011] claim—that qualitative proba-
bility is representationally impoverished compared to numerical probabil-
ity, the case against qualitative probability has been greatly overstated. I
will show that, not only does qualitative probability have comparable—if
not greater—representational power than real-valued probability, it even has
comparable—if not greater—representational power than infinitesimal prob-
ability.3

Several non-classical theories of probability have been developed that al-
low probability functions to take on infinitesimal values. In this paper, I
focus on the theory recently developed by Benci et al. [2013, 2016]—Non-
Archimedean Probability Theory (NAP). However, many of my points will
apply to other theories of infinitesimal probability as well.4

The structure of this paper is as follows. In Section 2, I review NAP as
well as the motivations for adopting it. In particular, I discuss four intu-
itively plausible desiderata for a theory of probability that Benci et al. argue

1See Benci et al. [2016, Section 4] for notable objections.
2Qualitative probability is also known as ‘comparative probability’ or, in epistemic

contexts, ‘comparative confidence’. See Fine [1973] and Fishburn [1986] for overviews.
3Thus, the present paper substantially extends the work of Stefánsson [forthcoming],

who argues against Meacham and Weisberg’s claim.
4See Benci et al. [2016, Section 2.3] for discussion of other such theories.
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NAP satisfies. In Section 3, I critically assess these desiderata and provide
weakened—but no less plausible—versions of them that are neutral between
numerical probability and qualitative probability. In Section 4, I provide a
theory of qualitative probability—which I call Qualitative Probability The-
ory (QP)—that I argue satisfies these weakened desiderata at least as well
as NAP. In Section 5, I argue that QP gives rise to additional philosophical
dividends that Benci et al. argue NAP gives rise to. In Section 6, I describe
two types of ‘conceptually possible’ probabilistic scenarios that NAP can-
not represent but which QP readily can. Technical results are proven in the
Appendix.

2 Non-Archimedean Probability Theory (NAP)

Benci et al. [2016] argue that any theory of probability should satisfy four
intuitively plausible desiderata:

1. Regularity. The probability of any possible event is strictly larger
than the probability of any impossible event.

2. Totality. Every event has a probability. That is, every subset of the
sample space is assigned a probability value.

3. Perfect Additivity. The probability of an arbitrary union of mutually
disjoint events is equal to the sum of the probabilities of the separate
events (where ‘sum’ has to be defined in an appropriate way in the
infinite case).

4. Weak Laplacianism. The probability theory allows for a mathemat-
ical representation of any ‘conceptually possible’ probabilistic scenario.
In particular, the theory allows for a mathematical representation of a
uniform probability distribution on sample spaces of any cardinality—
finite, countable, or uncountable—as well as many other probability
ratios between the atomic events.

As Benci et al. [2016, Section 2.2] observe, classical probability theory—
characterized by the axioms of Kolmogorov [1950]—does not satisfy all of
these desiderata for arbitrary sample spaces. To overcome these limita-
tions, Benci et al. have developed an alternative theory of probability—Non-
Archimedean Probability Theory (NAP). On NAP, probability functions can
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take on real values as well as other values in ‘non-Archimedean’ fields—that
is, fields that extend the reals and contain infinitesimals. Benci et al. argue
that NAP, unlike classical probability theory, does satisfy all of the above
desiderata for arbitrary sample spaces. They take this to be a substantial
point in favour of adopting NAP as a theory of probability.

In this section, I describe the structure of NAP and clarify the above
motivations for adopting it. Since the axioms of NAP are analogous to the
axioms of classical probability theory, I begin by reviewing classical proba-
bility theory in Section 2.1. In Section 2.2, I lay out the axioms of NAP. In
Section 2.3, I describe Benci et al.’s argument that NAP satisfies the above
desiderata.

2.1 Classical probability theory

The central notion of classical probability theory is that of a probability
triple, 〈Ω,F , PK〉. Ω is known as the ‘sample space’. It is the set of all
possible outcomes (or ‘atomic events’). F is known as the ‘event space’. It
is a subset of P(Ω)—the power set of Ω—and is a σ-algebra on Ω. Finally,
PK is a function that satisfies the following axioms:

K0. Domain and Range. The events are the elements of F , and
the probability function is a function

PK : F → R,

where R is the set of real numbers.

K1. Non-negativity. For all A in F ,

PK(A) ≥ 0.

K2. Normalization. PK(Ω) = 1.

K3. Finite Additivity. If A and B are events and A ∩ B = ∅,
then

PK(A ∪B) = PK(A) + PK(B).

K4. Continuity. Let

A =
⋃
n∈N

An,
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where An ⊆ An+1 are elements of F and N is the set of
natural numbers. Then,

PK(A) = lim
n→∞

PK(An).

Note that the conjunction of K3 and K4 is equivalent to the requirement
that PK satisfies countable additivity. Countable additivity is the countable
extension of finite additivity:

Countable Additivity. Let A = {A1, A2, . . .} be a countable set
of mutually disjoint events. Then

PK(A1 ∪ A2 ∪ . . .) = PK(A1) + PK(A2) + . . .

As I describe in the next section, NAP generalizes finite and countable ad-
ditivity by generalizing Continuity.

2.2 The axioms of NAP

In this section, I lay out the axioms of NAP. I omit some of the technical
details, as they will not matter for the purposes of this paper. For complete
details, see Benci et al. [2013, 2016].

The central notion in NAP is that of a NAP space, 〈Ω, P,U〉. As in
classical probability theory, Ω is the sample space, i.e., the set of possible
outcomes. Here, however, P is a generalized probability function—defined
on all of the subsets of Ω. Moreover, P takes on values in a field that may
contain both real numbers and infinitesimal numbers. Finally, U has no
analogue in classical probability theory. It is a free ultrafilter on the set of
all non-empty finite subsets of Ω. As I will describe shortly, U is necessary
for formulating a generalized infinitary additivity principle.

Here are the first four axioms of NAP:

NAP0. Domain and Range. The events are all of the subsets of Ω.
The NAP function P is total:

P : P(Ω)→ R,

where R is a ‘superreal’ field—that is, an ordered field that
contains the real numbers as a subfield. Unlike in classical
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probability theory, the range R is not fixed for every sample
space. Rather, R is partially determined by the cardinality
of Ω. In general, the larger Ω is, the larger R is.5

NAP1. Regularity. P (∅) = 0 and, for every non-empty set A in
P(Ω),

P (A) > 0.

NAP2. Normalization:
P (Ω) = 1.

NAP3. Finite Additivity. If A and B are events and A ∩ B = ∅,
then

P (A ∪B) = P (A) + P (B).

The final axiom of NAP is a generalization of Continuity. To spell it out,
define conditional probability via the ratio formula:

P (A|B) =
P (A ∩B)

P (B)
,

where A and B are subsets of Ω and B is non-empty.6

NAP4. Non-Archimedean Continuity. For any event A and any non-
empty finite subset λ of Ω,

P (A|λ) ∈ R. (1)

Additionally,
P (A) = lim

λ↑Ω
P (A|λ), (2)

where limλ↑Ω P (A|λ) is a number in R that is partially de-
termined by the values of P (A|λ) for every non-empty finite
subset λ of Ω. Benci et al. [2016] call this number the ‘Ω-
limit’. The Ω-limit is not unique. It depends on the spec-
ification of a free ultrafilter U on the set of all non-empty
finite subsets of Ω. I omit the details here.

5In particular, if Ω is uncountable, then R contains infinitesimals.
6Note that, because R is a field, this ratio is well-defined for any such A and B.
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Note that NAP0–NAP3 are straightforwardly analogues of K0–K3. Further,
Benci et al. [2016, Section 3.5] show that NAP4 entails an infinitary additivity
principle that is a generalization of finite and countable additivity.

In general, it is not possible to define the ultrafilter U explicitly. Indeed,
to show that there are models of the above axioms, Benci et al. appeal to
the axiom of choice. So, there is an essentially non-constructive aspect to
NAP functions. I will return to this point later.

2.3 NAP and the four desiderata

It readily follows that NAP (more precisely, NAP functions) satisfy the first
three desiderata above. Regularity is satisfied via NAP1, Totality is sat-
isfied via NAP0, and Perfect Additivity is satisfied via NAP4.

Benci et al. also argue that NAP satisfies Weak Laplacianism—that is,
that any ‘conceptually possible’ probabilistic scenario can be represented by
a NAP function. In what follows, I will understand a probabilistic scenario
to be specified by three items:

1. A sample space Ω.

2. A collection S of subsets of Ω.

3. A collection C of probabilistic constraints that the elements of S satisfy.

A probabilistic scenario 〈Ω, S, C〉 is conceptually possible, then, just in case
it is conceptually possible to have a set Ω of outcomes such that the elements
of S satisfy the constraints in C.

For example, Benci et al. take a fair lottery on N in which the set E
of even integers is exactly as probable as the set O of odd integers to be
a conceptually possible probabilistic scenario. This scenario is specified as
follows:

1. Ω = N.

2. S = {{1}, {2}, {3}, . . . ,E,O}.

3. Probabilistic constraints.

(a) For every i, j ∈ N: {i} ≈ {j}.
(b) E ≈ O,
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where ‘A ≈ B’ means that A is exactly as probable as B. (This notation will
prove useful later.)

Although Benci et al. do not explicitly argue that NAP can represent
every conceptually possible probabilistic scenario, they do show that NAP
can represent many more such scenarios than classical probability theory
can. (See Benci et al. [2013, Section 5] and Benci et al. [2016, Section 3.5].)
I discuss these scenarios in Section 4.3.3.

3 Reconsidering the Desiderata

As stated, the desiderata of Section 2 presuppose that any acceptable theory
of probability must be one of numerical probability. For example, Perfect
Additivity talks about ‘summing’ probabilities, which only makes sense if
probability is understood as numerical. As such, these desiderata immedi-
ately disqualify any theory of qualitative probability from being acceptable.
This seems an intuitively undesirable consequence, given the large and influ-
ential literature on qualitative probability.7 It seems more plausible that our
desiderata for a theory of probability should be formulated in a manner that
is neutral between qualitative and numerical probability.

Hence, I do two things in this section. In Section 3.1, I reformulate these
desiderata in a manner that is neutral between qualitative and numerical
probability. In Section 3.2, I critically assess these desiderata.

3.1 Reformulating the desiderata

To reformulate the desiderata of Section 2 in a manner that is neutral between
qualitative and numerical probability, I will generalize Regularity and To-
tality and provide a weakened—but no less plausible—version of Perfect
Additivity.

First, consider Regularity. The following desideratum generalizes it:

7Axiomatic theories of qualitative probability have been developed by de Finetti [1937],
Koopman [1940a], Scott [1964], Suppes and Zanotti [1982], and others. Although it may
no longer be so widespread, the view that qualitative probability is somehow more funda-
mental than numerical probability was held by a number of notable authors in the history
of probability, including Keynes [1921], de Finetti [1937], Koopman [1940a], and Savage
[1954]. See Stefánsson [2017] for a contemporary defense of the view.
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1. Generalized Regularity. Any possible event is strictly more proba-
ble than any impossible event.

Because Generalized Regularity is a comparative statement, it is readily
a desideratum for any theory of numerical probability as well as any theory
of qualitative probability.

Second, consider Totality. The following desideratum generalizes it:

2. Complete Comparability. For any events A and B, A is at least as
probable as B, or B is at least as probable as A.

Let A and B be arbitrary events. Note that Complete Comparability,
in conjunction with the claim that probability is numerical, implies that the
numerical probability of A is at least as great as that of B or the numerical
probability of B is at least as great as that of A. Moreover, this claim
implies that both A and B have numerical probabilities, which implies that
every event has a probability. Thus, Complete Comparability generalizes
Totality. Because Complete Comparability is a comparative statement,
it is readily a desideratum for any theory of qualitative probability as well.

Third, consider Perfect Additivity. Here is a weakening of it:

3. Weakened Perfect Additivity. A bigger disjunction of mutually
disjoint events is at least as probable as a smaller disjunction of mu-
tually disjoint events, provided that each disjunct of the former is at
least as probable as each disjunct of the latter.

As before, Weakened Perfect Additivity is readily a constraint on any
theory of qualitative probability. Additionally, it seems no less plausible
a desideratum for a theory of probability than Perfect Additivity is for
a theory of numerical probability. I now show that any theory of numeri-
cal probability that satisfies Perfect Additivity also satisfies Weakened
Perfect Additivity.

Let A and B be unions of mutually disjoint events Ai and Bj, indexed by
i ∈ IA and j ∈ IB, respectively. Then, Perfect Additivity entails:

P (A) =
∑
i∈IA

P (Ai)

P (B) =
∑
j∈IB

P (Bj),
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where the sums are defined in an appropriate way when the index sets IA, IB
are infinite. Now, on any reasonable definition of ‘sum’, P (A) ≥ P (B) if the
following conditions hold:

(1) |IA| > |IB|, and

(2) For every Ai, Bj, P (Ai) ≥ P (Bj).

Thus, if we think of unions as (possibly infinite) disjunctions, then Perfect
Additivity implies Weakened Perfect Additivity when probability is
understood as numerical. Hence, any theory of numerical probability that
satisfies Perfect Additivity also satisfies Weakened Perfect Additivity.

Finally, although Weak Laplacianism talks about ‘probability ratios’
between atomic events, I will later show—in Section 4.2—that we can un-
derstand probability ratios in terms of qualitative probability. Because the
rest of Weak Laplacianism is already neutral between numerical and qual-
itative probability—in particular, a uniform probability distribution on a
sample space is simply one in which every atomic event is exactly as proba-
ble as every other atomic event—I will not modify this desideratum in what
follows.

3.2 Questioning the desiderata

Benci et al. [2016] claim that Regularity, Totality, Perfect Additiv-
ity, and Weak Laplacianism are desiderata for a theory of probability.
However, it is worth asking whether these items—or their more neutral
counterparts—really are such desiderata. Arguably the most questionable
items are Totality and Complete Comparability.

Although Totality is presupposed in much of the probability literature,
it is difficult to find explicit arguments for Totality. That said, Benci et al.
do provide one argument in favour of Totality—namely, that it allows one’s
probability theory to avoid non-measurable sets, which Benci et al. state are
‘widely regarded as “pathologies” by probability theorists’ (ibid., p. 27). This
argument is a bit quick, however. While it is true that non-measurable sets
are mathematically pathological in the sense that they complicate technical
matters in classical probability theory, it is not obvious that such sets should
be banned as a precondition to theorizing.

More generally, any theory of numerical probability that satisfies Total-
ity rules out the possibility of what Hájek [2003b] calls ‘probability gaps’—
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that is, events that are assigned no probability value whatsoever. Non-
measurable sets are a notable alleged example of probability gaps, but there
are others. Hájek [2003b, pp. 278–280] cites additional such examples from
decision theory, statistics, and theories of subjective probability. Here is an
adaptation of a more pedestrian example from Fishburn [1986, p. 339]: is the
event (A) that the population of Mexico will exceed 175 million by 2030 at
least as probable as the event (B) that the first card drawn from my old and
probably incomplete bridge deck will be a heart? As A and B concern rather
disparate subject matters, it is not implausible that no probability compari-
son can be made between them. So, it is not implausible that Totality—and,
by extension, Complete Comparability—fail in this case.8

Complete Comparability also seems to be in tension with Weak
Laplacianism. Even if there are no actual probability gaps—in decision
theory, statistics, or elsewhere—it certainly seems that we can coherently
imagine probabilistic scenarios that involve probability gaps. By Weak
Laplacianism, any theory of probability should be able to mathematically
represent such scenarios. Nonetheless, no theory that satisfies Totality can
represent them. In particular, then, NAP fails to satisfy Weak Laplacian-
ism.

For these reasons, Complete Comparability does not appear to be
a genuine desideratum for a theory of probability. So, in what follows, I
will only aim to describe a theory of qualitative probability that satisfies
Generalized Regularity, Weakened Perfect Additivity, and Weak
Laplacianism. Henceforth, I will refer to these items as the ‘weakened
desiderata’.

4 Qualitative Probability

Qualitative probability is the binary relation of one event’s being at least
as probable as another event.9 Historically, the main interest in studying
qualitative probability has been to prove various ‘representation theorems’
connecting qualitative probability to numerical probability.10 Nonetheless,
qualitative probability may be studied as a subject in its own right, and

8See Keynes [1921, Chapter 3] for additional such cases.
9Unless otherwise specified, I leave the interpretation of ‘at least as probable’ open here

and in what follows.
10See Fishburn [1986] for an overview.
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that is precisely what I will do in this paper. As I will show, qualitative
probability provides a simple and powerful tool for representing probabilistic
scenarios that involve infinite sample spaces.

To fully appreciate the representational power of qualitative probability,
it is fruitful to study qualitative conditional probability. Qualitative condi-
tional probability is the quaternary relation of its being the case that event
A, given event B, is at least as probable as event C, given event D. When
appealing to qualitative conditional probability, we need not employ any
special technical innovations (as we must do in NAP) to make sense of such
comparisons when B and D have classical probability 0.

The first axiomatization of qualitative conditional probability was pro-
vided by Koopman [1940a]. In this section, I provide a theory of qualitative
conditional probability—which I call Qualitative Probability Theory (QP)—
that is an extension of Koopman’s axiomatization. Although a number of
alternative axiomatizations have been proposed since Koopman’s, nearly all
of Koopman’s axioms have figured as axioms or theorems in subsequent ax-
iomatizations.11 As such, Koopman’s axioms constitute a common core of
intuitively plausible constraints on qualitative conditional probability.

The plan for this section is as follows. In Section 4.1, I lay out the axioms
of QP. In Section 4.2, I show how we can understand probability ratios in QP.
In Section 4.3, I argue that QP satisfies the weakened desiderata of Section
3.1 at least as well as NAP. In Section 4.4, I argue that QP satisfies these
desiderata more simply and perspicuously than NAP.

4.1 The axioms of Qualitative Probability Theory (QP)

Notation:

• A|B � C|D: A, given B, is at least as probable as C, given D.

• A|B ≈ C|D: both A|B � C|D and C|D � A|B. That is: A, given B,
is exactly as probable as C, given D.

• A|B � C|D: A|B � C|D and it is not the case that C|D � A|B. That
is: A, given B, is strictly more probable than C, given D.

• A � B: A|Ω � B|Ω. Similarly for A � B and A ≈ B.

11See Krantz et al. [1971, pp. 221–222] for discussion.
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The central notion of QP is that of a QP-space, 〈Ω,�〉. As in classical
probability theory and NAP, Ω is the collection of possible outcomes. Let
P0(Ω) be the set of non-empty elements of P(Ω), i.e., the power set of Ω.
Then, a QP-relation � is a (possibly partial) binary relation on P(Ω) ×
P0(Ω) that satisfies the following axioms. For simplicity, I leave universal
quantification over events implicit in the axioms that follow.

The first nine axioms are due to Koopman:

QP1. Verified Contingency. k|k � a|h.

QP2. Implication. If a|h � k|k, then h ⊆ a.

QP3. Reflexivity. a|h � a|h.

QP4. Transitivity. If c|l � b|k and b|k � a|h, then c|l � a|h.

QP5. Antisymmetry. If b|k � a|h, then ¬a|h � ¬b|k.

QP6. Composition.
Suppose:

(a) ∅ 6= a1 ⊆ b1 ⊆ c1 and ∅ 6= a2 ⊆ b2 ⊆ c2.

(b) a2|b2 � a1|b1.

(c) b2|c2 � b1|c1.

Then: a2|c2 � a1|c1.12

QP7. Decomposition.
Suppose:

(a) ∅ 6= a1 ⊆ b1 ⊆ c1 and ∅ 6= a2 ⊆ b2 ⊆ c2.

(b) a1|b1 � a2|b2.

(c) a2|c2 � a1|c1.

Then: b2|c2 � b1|c1.13

QP8. Alternative Presumption. If r|s � a|(b ∩ h) and r|s �
a|(¬b ∩ h), then r|s � a|h.

QP9. Subdivision.
Suppose a1, . . . , an, b1, . . . , bn are such that:

12Koopman actually states two axioms of composition; the other is analogous. I follow
Koopman [1940b]’s formulations here, and in QP7, which are simpler than the logically
equivalent formulations of Koopman [1940a].

13Koopman actually states four axioms of decomposition; the others are analogous.
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(a) (ai ∩ aj) = (bi ∩ bj) = ∅ if i 6= j.

(b) a = (a1 ∪ . . . ∪ an) 6= ∅ and b = (b1 ∪ . . . ∪ bn) 6= ∅.
(c) an|a � . . . � a1|a.

(d) bn|b � . . . � b1|b.
Then: bn|b � a1|a.

Here is the final axiom of QP:

QP10. Qualitative Perfect Additivity.
Let a =

⋃
i∈Ia ai and b =

⋃
j∈Ib bj, for index sets Ia, Ib. Sup-

pose:

(a) |Ia| > |Ib|.
(b) (ai ∩ aj) = (bi ∩ bj) = ∅ if i 6= j.

(c) For every i ∈ Ia, j ∈ Ib: ai|c � bj|c.
Then: a|c � b|c.

Remark. If one insists upon Complete Comparability, one may treat �
as a total binary relation on P(Ω) × P0(Ω). That is, one may supplement
the above axioms with the following one:

QP0. Qualitative Totality. a|b � c|d or c|d � a|b.

For the reasons I stated in Section 3.2, however, I won’t assume that Qual-
itative Totality is an axiom of QP in what follows.

4.2 QP and probability ratios

It is natural to speak of one event as being ‘twice’ or ‘one-third’ as probable as
another event. In this section, I show how we can make sense of probability
ratios between events in terms of qualitative conditional probability. The
basic idea is to understand probability ratios between arbitrary events as
being relative to a set of ‘reference’ events such that the probability ratios
between the latter events are intuitively immediate. I discuss three types of
probability ratios: rational, real-valued, and infinitesimal.14

14See Stefánsson [forthcoming, Section 3.1] for an alternative (albeit less general) ap-
proach to understanding probability ratios in terms of qualitative unconditional probabil-
ity.
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4.2.1 Rational ratios

To make sense of rational probability ratios in QP, it is useful to employ
Koopman [1940a]’s notion of an ‘n-scale’.

Definition. Let an n-scale be a set of n events {s1, . . . , sn} such that:

1. Sn = (s1 ∪ . . . ∪ sn) 6= ∅.

2. si ∩ sj = ∅ for i, j = 1, . . . , n such that i 6= j.

3. si|Sn ≈ sj|Sn for i, j = 1, . . . , n.15

An n-scale {s1, . . . , sn} is simply a finite fair lottery: given that some member
of {s1, . . . , sn} obtains, s1 is exactly as probable as s2, which is exactly as
probable as s3, and so on.

As the following theorem proven by Koopman [1940a] shows, n-scales
behave much like rational numbers.

N-Scale Equivalence. Suppose:

1. For every positive integer n, there is some n-scale.

2. {u1, . . . , un} is an n-scale and {v1, . . . , vm} is an m-scale.

3. k and l are integers such that 0 ≤ k ≤ n and 0 ≤ l ≤ m.

4. k
n
≥ l

m
.

Then:

(ui1 ∪ . . . ∪ uik)|(u1 ∪ . . . ∪ un) � (vj1 ∪ . . . ∪ vjl)|(v1 ∪ . . . vm). (3)

If k
n
> l

m
, then replace ‘�’ with ‘�’ above.16

To illustrate this theorem, suppose {u1, u2, u3} and {v1, v2, v3, v4, v5} are
a 3-scale and 5-scale, respectively. Intuitively, u1 is 1

3
as probable as (u1 ∪

u2∪u3), and (v1∪ v2) is 2
5

as probable as (v1∪ v2∪ v3∪ v4∪ v5). Since 2
5
> 1

3
,

we would expect that (v1 ∪ v2), given (v1 ∪ v2 ∪ v3 ∪ v4 ∪ v5), would be more

15Cf. Koopman [1940a], Definition 1.
16Cf. Koopman [1940a], Theorem 14.
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probable than u1, given (u1 ∪ u2 ∪ u3). N-Scale Equivalence vindicates
this intuition, provided there is an n-scale for every positive integer n.

We can now see how to make sense of rational probability ratios in QP.
Let a and b be events such that a ⊆ b, and suppose there is an n-scale Vn
consisting of atomic events for every positive integer n.17 Further, suppose
that a|b ≈ Um|Vn, where Um is some m-member subset of Vn. Intuitively,
then, a is m

n
times as probable as b. Moreover, N-Scale Equivalence (along

with Transitivity) ensures that, for any m′-member subset Um′ of Vn′ , a|b �
Um′ |Vn′ if m

n
≥ m′

n′ and that Um′|Vn′ � a|b if m′

n′ ≥ m
n

. Thus, intuitively, a is
at least m

n
times as probable as b and no more than m

n
times as probable as

b. That is, a is exactly m
n

times as probable as b. We can generalize beyond
the case when a ⊆ b as follows.

Let m and n be positive integers. Say that a is m
n

times as probable as
b—equivalently, b is n

m
times as probable as a—just in case:

• For every positive integer k, there is a k-scale Vk consisting of atomic
events.

• For any positive integers m′, n′ such that m′

n′ = m
n

, there is some positive
integer k such that:

(i) a|(a ∪ b) ≈ Um′ |Vk for any m′-member subset Um′ of Vk.

(ii) b|(a ∪ b) ≈ Un′ |Vk for any n′-member subset Un′ of Vk.

Intuitively, a is m′

k
times as probable as (a∪ b), and b is n′

k
times as probable

as (a∪b). So, intuitively, a is (m
′

k
)/(n

′

k
) = m′

n′ = m
n

times as probable as b. We
can also understand a being at least m

n
times as probable as b—equivalently,

b as being at most n
m

times as probable a—by replacing ‘≈’ with ‘�’ in (ii)
and with ‘�’ in (iii).

Although the nature of k in (i)–(iii) will generally depend on specific
features of a given probabilistic scenario being represented by a QP-space, it
is worth noting that k is simply given by (m′ +n′) when a and b are disjoint.
That this is the case is ensured by the following qualitative analogue of finite
additivity proven by Koopman [1940a]:

Qualitative Finite Additivity. Suppose:

17The appeal to atomic events is not strictly necessary, but it will simplify the ensuing
discussion.
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1. (a1 ∩ b1 ∩ h1) = (a2 ∩ b2 ∩ h2) = ∅.

2. a1|h1 � a2|h2.

3. b1|h1 � b2|h2.

Then: (a1 ∪ b1)|h1 � (a2 ∪ b2)|h2.18

Suppose a is m
n

times as probable as b and that a ∩ b = ∅. Then, for any
positive integer k, there is a k-scale Vk = (v1 ∪ . . . ∪ vk), for atomic events
v1, . . . , vk. Moreover, for any m′, n′ such that m′

n′ = m
n

, there is some positive
integer k such that (i) a|(a∪b) ≈ Um′ |Vk for any m′-member subset Um′ of Vk
and (ii) b|(a∪ b) ≈ Un′|Vk for any n′-member subset Un′ of Vk. Next, observe
that |Um′∪Un′ | = |Um′ |+ |Un′|−|Um′∩Un′ | = m′+n′−|Um′∩Un′ | ≤ |Vk| = k.
So, m′+n′ ≤ k. Thus, we may let Um′ = (v1∪. . .∪vm′) and Un′ = (vm′+1∪. . .∪
vm′+n′), so that Um′ ∩ Un′ = ∅. Then, by Qualitative Finite Additivity,
(Um′ ∪ Un′)|Vk � (a ∪ b)|(a ∪ b). Additionally, by Verified Contingency,
(a ∪ b)|(a ∪ b) � Vk|Vk. So, by Transitivity, (Um′ ∪ Un′)|Vk � Vk|Vk, i.e.,
(v1 ∪ . . .∪ vm′+n′)|Vk � Vk|Vk. Now suppose m′ + n′ < k. Then, by N-Scale
Equivalence, Vk|Vk � (v1∪. . .∪vm′+n′)|Vk, contrary to what was just found.
So, it must be that m′ + n′ = k.

Let us take stock. The above analysis ensures that we can make sense
of rational probability ratios in QP by making reference to n-scales—that
is, finite fair lotteries. Note that such lotteries needn’t be actual lotteries;
they may merely be hypothetical. So, statements about rational probability
ratios between events a and b can simply be understood as shorthand for
statements involving qualitative probability comparisons among a, b, (a∪ b),
and various events—call them ‘reference’ events—involving hypothetical fair
lotteries. For example, the statement that a is 2

3
as probable as (a ∪ b) can

be understood as meaning that a, given (a ∪ b), is just as probable as the
‘reference’ event that one picks one of 2 given tickets in a hypothetical fair
lottery of 3 tickets, given that one picks some ticket in that lottery.19 Since
N-Scale Equivalence ensures that all n-scales behave like rational numbers,
the nature of the n-scales with which we make sense of such statements is
immaterial.

18Cf. Koopman [1940a], Theorem 5.
19More generally, the statement means that a, given (a ∪ b), is just as probable as the

event that one picks one of m tickets in hypothetical fair lottery of n tickets, given that
one picks some ticket in that lottery, for any m and n such that m

n = 2
3 .
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Note that, because statements about rational probability ratios involve
reference to n-scales, we can only make sense of such statements between
events of a given QP-space 〈Ω,�〉 if that QP-space has a particular sort of
structure. In particular, Ω must include some set Ωref of ‘reference’ outcomes
out of which the relevant n-scales are built, and � must satisfy various ‘ref-
erence’ constraints constitutive of rational probability ratios holding among
events in P(Ω). More precisely, to make sense of the statement that event
a is m

n
times as probable as event b, the QP-space 〈Ω,�〉 must be equipped

with the following structure:

1. ‘Reference’ outcomes:

a. For some countably infinite set Ωref , Ωref ⊆ Ω.

2. ‘Reference’ constraints:

a. For every positive integer k, there is a k-member subset Vk of Ωref

such that {v}|Vk ≈ {v′}|Vk, for every v, v′ ∈ Vk.
b. For any positive integers m′, n′ such that m′

n′ = m
n

, there is some
positive integer k such that:

(i) a|(a ∪ b) ≈ Um′ |Vk for any m′-member subset Um′ of Vk.

(ii) b|(a ∪ b) ≈ Un′ |Vk for any n′-member subset Un′ of Vk.

Remark. Although there is, for every positive integer n, an n-member subset
of Ωref that is a fair sub-lottery of Ω, Ωref need not itself be a fair sub-lottery
of Ω. The assumption that it is leads to a qualitative version of de Finetti
[1972]’s paradox of non-conglomerability. See DiBella [2018] for discussion.

All of that said, I have not yet shown that there are QP-spaces with the
aforementioned sort of structure because I have not yet shown that there
are QP-spaces, i.e., models of the axioms of QP. My discussion so far only
establishes that, if the axioms of QP are consistent with the above sorts of
constraints, then we can make sense of rational probability ratios between
events of a given QP-space in the above manner. I demonstrate that the
axioms of QP are indeed consistent with the above sorts of constraints—as
well as the constraints I will soon describe for making sense of real-valued
and infinitesimal probability ratios—in the Appendix.
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4.2.2 Real-valued ratios

We can understand real-valued probability ratios more generally in terms of
rational probability ratios. The method I will describe is analogous to the
method of constructing the reals from the rationals via Dedekind cuts.

Let r be an arbitrary positive real number. Say that a is at least r times
as probable as b just in case:

(i) For every positive rational number r′ ≤ r, a is at least r′ times as
probable as b.

Similarly, say that a is at most r times as probable as b just in case:

(ii) For every positive rational number r′′ ≥ r, a is at most r′′ times as
probable as b.

Then, we can say that a is exactly r times as probable as b just in case (i)–(ii)
hold. From the analysis of the previous section, (i)–(ii) entail that there is
a k-scale Vk of atomic events for every positive integer k. Additionally, (i)
entails the following:

(i′) For any positive integers m,n such that r ≥ m
n

, there is some positive
integer k such that:

(a) a|(a ∪ b) � Um|Vk for any m-member subset Um of Vk.

(b) b|(a ∪ b) � Un|Vk for any n-member subset Un of Vk.

Similarly, (ii) entails the following:

(ii′) For any positive integers m,n such that m
n
≥ r, there is some positive

integer k such that:

(c) a|(a ∪ b) � Um|Vk for any m-member subset Um of Vk.

(d) b|(a ∪ b) � Un|Vk for any n-member subset Un of Vk.

As before, when a and b are disjoint, k is simply given by (m + n). Addi-
tionally, note that the above analysis readily reduces to the analysis of the
previous section when r is rational.
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4.2.3 Infinitesimal ratios

We can understand infinitesimal probability ratios by appealing to real-
valued probability ratios. In particular, we may say that a is infinitesimally
probable relative to b just in case, for every positive real number r, b is at
least r times as probable as a.

More generally, for any non-negative real number r, we can say that a
is at most infinitesimally more or less than r times as probable as b just in
case:

(a) For every positive real number r′ < r, a is at least r′ times as probable
as b.

(b) For every positive real number r′′ > r, a is at most r′′ times as probable
as b.

Note that the above constraints are identical to (i)–(ii) from the previous
section except that they now involve strict inequalities. The case r = 0
corresponds to a’s being infinitesimally probable relative to b.

In what follows, I will employ the following notation:

• a ≈r b: a is r times as probable as b.

• a ∼r b: a is at most infinitesimally more or less than r times as probable
as b.

Note that, if a ≈r b, then a ∼r b, but the converse is not the case.

4.3 QP and the weakened desiderata

I now argue that QP satisfies the weakened desiderata of Section 3.1 at least
as well as NAP.

4.3.1 Generalized Regularity

In the context of QP, Generalized Regularity amounts to the following
claim:

Qualitative Regularity. For any non-empty event A, A � ∅.
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It is easy to show any QP-relation satisfies Qualitative Regularity, as it
is a straightforward consequence of Theorem 3 proven in Koopman [1940a].
According to this theorem, if (a∩ h) ⊂ (b∩ h), then b|h � a|h. Qualitative
Regularity follows when a = ∅, b = A, and h = Ω.

Any QP-relation also satisfies a qualitative version what Benci et al. call
the ‘Euclidean’ principle. According to the Euclidean principle—of which
Regularity is a special case—any set has a strictly larger probability than
any of its proper subsets. As Benci et al. show, any NAP function satis-
fies this principle. In the context of QP, this principle corresponds to the
following claim:

Qualitative Euclidean Principle. For any events A and B
such that A ⊂ B, B � A.

This principle is also a straightforward consequence of Koopman’s Theorem
3.

4.3.2 Weakened Perfect Additivity

In the context of QP, Weakened Perfect Additivity merely amounts to
the claim that QP10, Qualitative Perfect Additivity, is true when C = Ω.
Hence, any QP-relation satisfies Weakened Perfect Additivity.

4.3.3 Weak Laplacianism

As I said in Section 2.3, Benci et al. do not show that every conceptu-
ally possible probabilistic scenario can be represented by a NAP function.
Rather, they only show that NAP functions can represent five notable types
of infinitary probabilistic scenarios that classical probability functions cannot
represent:

1. A uniform distribution on a sample space Ω of any cardinality—finite,
countable, or uncountable—as well as distributions on Ω involving
many other real-valued probability ratios between the atomic events.

2. A fair lottery on the set N of natural numbers in which the probability
of each subset A of N is the asymptotic density of A.20

20More precisely, a fair lottery on N in which the probability P (A) differs no more than
an infinitesimal from the asymptotic density d(A) of A (if it exists). The reason for this
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3. A fair lottery on the set Q of rational numbers in which the probability
of an interval is proportional to the length of that interval.

4. A fair lottery on the set R of real numbers in which the probability of
an interval is proportional to the length of that interval.

5. A countably infinite sequence of fair coin tosses.

In the Appendix, I use the machinery of Section 4.2 to show that each of
the above scenarios can be represented by a QP-space (in the sense I make
precise there). I also show that total versions of the above scenarios—that
is, versions of these scenarios that include Complete Comparability as
a constraint—can be represented by QP-spaces. Although further work is
needed, these results suggest that QP satisfies Weak Laplacianism at least
as well as NAP.

As the discussion in the Appendix shows, these results also establish
that QP is consistent and admit of models involving sample spaces of any
cardinality. To my knowledge, this is (surprisingly) the first demonstration
of consistency for a theory of qualitative conditional probability.

4.4 The simplicity and perspicuity of QP

I have argued that QP satisfies the weakened desiderata of Section 3.1 at
least as well as NAP. I now argue that QP satisfies these desiderata more
simply and perspicuously than NAP. More precisely, I argue: (1) we can
construct QP-spaces that satisfy these desiderata more simply than we can
construct NAP functions that satisfy them, and (2) QP-spaces provide more
perspicuous representations of probabilistic scenarios than NAP functions.

First, in order to construct NAP functions that satisfy these desiderata,
we must appeal to such sophisticated mathematical machinery as the ax-
iom of choice, free ultrafilters, and non-standard limit processes. (Although
the axiom of choice entails the existence of the relevant ultrafilters and non-
standard limits, one still needs to employ the latter machinery to construct
NAP functions.) By contrast, to construct QP-spaces that satisfy the desider-
ata, the only substantive mathematical machinery we need to appeal to is

qualification is that there are subsets A,B of N such that A ⊂ B yet d(A) = d(B). So, in
order to satisfy the Euclidean principle, it must be that P (B) > P (A). See Benci et al.
[2013, p. 142] for further discussion. A similar qualification holds for the fourth scenario.
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that of partially ordered sets (of which QP-spaces are a special class). More-
over, as I show in the Appendix for a variety of (non-total) probabilistic
scenarios, we can construct a QP-space that represents a given such scenario
merely by appealing to the axioms of QP and the constraints of the scenario
in question.21 So, QP satisfies the desiderata more simply than NAP.

Next, a typical NAP function that can represent a given probabilistic
scenario has a good deal of artifactual structure. For example, Benci et
al. show that some NAP functions that can represent a fair lottery on N
assign the set O of odd numbers greater probability than the set E of even
numbers, while others assign these sets the same probability. As Benci et al.
note, this difference is due to the arbitrary choice of free ultrafilter used to
construct these functions. So, it is merely an artifact of some NAP functions
that O is more probable than E. Moreover, the fact that this probability
difference is a representational artifact only becomes clear when we consider
the whole family of NAP functions that can represent this scenario and then
determine which probability orderings vary among the family and which do
not. In general, one cannot “read off” the probabilistic facts of a probabilistic
scenario straight from any particular NAP function that can represent it.

By contrast, consider a probabilistic scenario 〈Ω, S, C〉 that can be rep-
resented by a QP-space 〈Ω′,�〉 in the manner I describe in the Appendix.
As I show there, 〈Ω′,�〉 can be constructed such that a|b � c|d if and only
if a|b � c|d is a logical consequence of CQP and the axioms of QP, where
CQP is a characterization of C in terms of qualitative conditional probabil-
ity. Intuitively, � faithfully represents the probabilistic constraints in C: �
has all of the structure of these constraints, just enough additional structure
to make it a QP-relation, and no further structure. Although the specific
‘reference’ outcomes that the QP-space employs to make sense of any proba-
bility ratios in C is arbitrary, any set of reference outcomes that satisfies the
constraints of Section 4.2 suffices to define a QP-relation with the aforemen-
tioned features. In this respect, the choice of reference items that determines
a QP-space is importantly dissimilar to the choice of ultrafilter that deter-
mines a NAP function. To wit: a QP-space’s reference outcomes do not lead
to artifactual orderings in its QP-relation, but a NAP function’s ultrafilter
can lead to artifactual orderings in its probability assignments. So, it is far

21As I show in the Appendix, we may employ the axiom of choice to construct a QP-
space that represents a scenario in which Complete Comparability is a constraint.
However, in such a case, we still need not appeal to free ultrafilters or non-standard limit
processes.
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easier to discern what is artifactual and what is not for a QP-space than it
is for a NAP function. Unlike the case with NAP functions, one can “read
off” the probabilistic facts of a probabilistic scenario straight from a single
QP-space that can represent it. Thus, QP-spaces provide more perspicuous
representations of probabilistic scenarios than NAP functions.22

5 Additional Dividends

Benci et al. [2016, Section 5] argue that NAP, in addition to satisfying the
desiderata of Section 2, has further philosophical advantages over classical
probability theory. In this section, I argue that QP has three notable such ad-
vantages as well. These advantages involve: (1) decision theory, (2) learning
from evidence, and (3) chance and credence.23

5.1 Decision theory

Benci et al. argue that a decision theory that employs NAP functions can lead
to subtler—and more rational—choices than a decision theory that employs
only classical probability functions (ibid., pp. 27, 36–37).

For example, suppose you are deciding whether to bet on the occurrence
of {1} or {1, 2} in a fair lottery on N. (Suppose further that the utility of
winning is the same for each bet and that the utility of losing is the same
for each bet.) Because any classical probability function assigns both events
probability 0, a decision theory that employs only classical probability func-
tions will have the implausible consequence that you should be indifferent
between the two bets. By contrast, because NAP functions satisfy the Eu-
clidean principle (cf. Section 4.3.1), any NAP function that can represent

22The issue of perspicuity in representation is closely related to the issue of non-
uniqueness in representation that is discussed by Benci et al. [2016, Section 6.1]. While
it is plausible that (as Benci et al. argue) non-uniqueness is not a problem in itself, non-
uniqueness is pragmatically problematic insofar as it leads to misleading representational
artifacts of the sort I discussed in the previous paragraph.

23Because of space limitations, I omit the other philosophical advantages discussed by
Benci et al. Like the advantages I discuss below, these other advantages arise from the
facts that NAP functions are regular and that one can conditionalize on events of classical
probability 0 in NAP. Since QP-relations satisfy Qualitative Regularity and readily
make sense of comparisons of the form A|B � C|D when B and D have classical probability
0, QP plausibly has these other advantages as well.
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a fair lottery on N assigns greater probability to {1, 2} than to {1}. As a
result, a decision theory that employs NAP functions will have the plausible
consequence that you should prefer betting on the larger set to betting on
the smaller set.

Because QP-relations satisfy a qualitative version of the Euclidean princi-
ple, a decision theory based on QP will plausibly also imply that you should
prefer betting on the larger set to betting on the smaller set. So, it is plau-
sible that a decision theory based on QP will lead to subtler—and more
rational—choices in cases like the above example as well.

Benci et al. also argue that a decision theory based on NAP can lead
to subtler decisions by virtue of the plurality of NAP functions that can
represent a given probabilistic scenario. For example, suppose you are now
deciding whether to bet on the occurrence of an even number or the occur-
rence of an odd number in a fair lottery on N. (As before, suppose also that
the utility of winning is the same for each bet and that the utility of losing
is the same for each bet.) As I said in Section 4.4, some NAP functions
that can represent this scenario assign the set O of odd numbers greater
probability than the set E of even numbers, while others assign these sets
the same probability. Thus, Benci et al. conclude that you may reasonably
favour betting on O over E. By contrast, if you apply a decision theory that
employs only classical probability functions, then you should be indifferent
between these two bets.

Although the recommendation to prefer betting on O to betting on E is
indeed subtler than the recommendation a decision theory based on classi-
cal probability would make here, the former recommendation appears to be
simply wrong upon reflection. As I said in Section 4.4, it is merely a rep-
resentational artifact of some NAP functions that O is more probable than
E. Intuitively, then, the spread of NAP values assigned to these sets should
have no relevance to decision-making. Yet, by claiming that this spread can
be relevant to decision-making, Benci et al. imply that merely representa-
tional artifacts can be relevant to decision-making. This consequence seems
implausible.

As I said in Section 4.4, a wide variety of conceptually possible probabilis-
tic scenarios can be faithfully represented by QP-spaces. So, there appear
to be prospects for developing a QP-based decision theory in a manner that
is faithful to a wide variety of decision problems. When applied to decision
problems involving infinite sample spaces, such a decision theory would be
subtler than a decision theory based on classical probability theory but not
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as implausibly subtle as the NAP-based decision theory suggested by Benci
et al.

Although I do not have a detailed decision theory based on QP to offer,
it is not implausible that such a theory could be developed. Such a theory
would presumably have a different character than a decision theory based on
NAP (or classical probability theory). Because NAP is a theory of numerical
probability, plausibly it can be incorporated in a familiar sort of framework
that takes an act to be rational just in case it maximizes expected utility.24

By contrast, because QP is a theory of qualitative probability, it cannot be
readily incorporated in such a framework. That said, Fine [1973, Chapter 2,
Section G] develops a decision theory based on axioms of qualitative (uncon-
ditional) probability. Moreover, on Fine’s theory, dominance reasoning—not
expected-utility maximization—is essential in determining the rationality of
an act. Easwaran [2014b] develops a broadly similar decision theory in which
qualitative probability plays a central role as well. Crucially, neither of these
authors takes numerical probabilities and utilities to be integrated from the
start (though they can be integrated in various circumstances). While nei-
ther of these authors appeals to QP specifically, their work suggests that one
could develop a QP-based decision theory along similar lines. I leave such a
project open for future work.

5.2 Learning from evidence

It is widely held that, when one learns new evidence, one should update one’s
degrees of belief by conditionalizing on the evidence. That is, if one’s initial
subjective probability function is Pi, then one’s new subjective probability
function P should be given by P (·) = Pi(·|E) upon learning E (and nothing
stronger). Because classical probability theory (with the ratio formula for
conditional probability) is silent on the value of Pi(·|E) when Pi(E) = 0, it
is also silent on how one should update one’s degrees of belief upon learn-
ing evidence to which one has antecedently assigned classical probability 0.
Intuitively, this consequence seems problematic since it seems that one can
learn such evidence. (See McGee [1994].)

NAP solves this problem by assigning all possible events positive prob-
ability, so P (A|B) is defined by the ratio formula whenever B is possible.

24Although Benci et al. do not offer a detailed decision theory based on NAP, they note
that non-Archimedean expected-utility theories have been developed by Pivato [2014] and
Pedersen [unpublished].
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Hence, one may consistently adopt NAP and accept conditionalization as
the appropriate belief update rule in all contexts.

To my knowledge, the question of how to update one’s comparative con-
ditional confidence relation—that is, one’s subjective qualitative conditional
probability relation—upon learning new evidence has not been discussed in
the literature. Nonetheless, a straightforward qualitative version of condi-
tionalization suggests itself:

Qualitative Conditionalization
Let the initial comparative conditional confidence relation of agent
S be �i. Then, when S learns evidence E (and nothing stronger),
S’s new comparative conditional confidence relation � should be
given as follows:

A|B � C|D if and only if A|(B ∩ E) �i C|(D ∩ E).

Because QP readily makes sense of comparisons of the form A|B � C|D
when B and D have classical probability 0, it follows that QP—supplemented
with Qualitative Conditionalization—can make sense of how one should
update one’s comparative conditional confidence relation upon learning evi-
dence that has classical probability 0.

5.3 Credence and chance

Lewis [1980]’s Principal Principle can be roughly stated as follows:

Prob(A|Ch(A) = x) = x,

where ‘Prob’ is an agent’s subjective probability function, Ch is a chance
measure, and x is a real number between 0 and 1. Benci et al. point to the
following problem with the principle when ‘Prob’ is taken to satisfy classical
probability theory:

In classical probability theory, it would seem that if A represents
the value of a continuous observable (say, a position measurement
for an electron in a superposition state), Ch(A) will be zero in
a non-determinist context for every value A. Hence, according
to Lewis’s principal principle, Prob(A|Ch(A) = 0) = 0. This
will render any probability conditional on the posterior Prob(A)
undefined. (p. 28)
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This is a problem because, intuitively, it makes sense to conditionalize on
events that have classical probability 0. For example, intuitively, it seems
that Prob({1}|{1, 2, 3}) = 1

3
for a fair lottery on N. Clearly, NAP has the

resources to address this problem. As I said in the previous section, in NAP,
we may conditionalize on any non-empty event via the ratio formula because
every non-empty event is assigned a positive probability value. Indeed, in
NAP, Prob({1}|{1, 2, 3}) = 1

3
since Prob({1}) = Prob({2}) = Prob({3}) >

0.
Of course, QP also has the resources to make sense of comparisons of the

form A|B � C|D when B and D have classical probability 0. Indeed, it is
easy to show that, in QP, {1}|{1, 2, 3} ≈ {2}|{1, 2, 3} ≈ {3}|{1, 2, 3} since
{1}|Ω ≈ {2}|Ω ≈ {3}|Ω.

It is worth noting that QP also has the resources to formulate a purely
qualitative version of the Principal Principle. To do so, let �Ch be the objec-
tive qualitative chance relation—that is, that relation of one event A’s being
at least as objectively probable as event B—and let � be the comparative
conditional confidence relation of a rational agent S (cf. Section 5.2).25 Then,
a straightforward qualitative version of the Principal Principle suggests itself:

Qualitative Principal Principle
For any events A, B, and p:
A|Ω � p|[A �Ch p �Ch B] � B|Ω.

Although this principle is a bit unwieldy to state in plain English, it is simply
a version of the original principle in which assignments of numerical proba-
bility have been replaced with relations of qualitative probability.

6 Representational Advantages of QP over

NAP

In this section, I describe two ‘conceptually possible’ probabilistic scenarios
that NAP cannot represent but which QP readily can. The existence of
these scenarios suggests that QP has even greater representational power
than NAP.

25For simplicity, I treat the objective qualitative chance relation here as a qualitative
unconditional probability relation.
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6.1 Relatively infinitesimally probable atomic events

Consider the following probabilistic scenario:

Toss a fair coin. If it lands Heads, pick 1. If it lands Tails, pick
a number at random from {2, 3, 4, . . .}.

Formally, this is a scenario 〈Ω, S, C〉 that is characterized as follows:

1. Ω = {1, 2, 3, . . .}.

2. S = {{1}, {2}, {3}, . . .} ∪ {{2, 3, 4, . . .}} ∪ {Ω}.

3. Probabilistic constraints C.

(a) {1}|Ω ≈ {2, 3, 4, . . .}|Ω.

(b) {i}|{2, 3, 4, . . .} ≈ {j}|{2, 3, 4, . . .}, for any i, j ≥ 2.

Constraint (a) follows from the stipulation that the coin is fair: since Heads
is exactly as probable as Tails, picking 1 is exactly as probable as picking
some number greater than 1. Constraint (b) follows from the stipulation that
you randomly pick an integer greater than 1 given that the coin lands Tails.

As it turns out, no NAP function can represent this scenario, even though
it seems to be conceptually possible.

Proof. Suppose for reductio that some NAP function P could represent the
above scenario. By Eq. (1) of the Non-Archimedean Continuity axiom,
P ({2}|{1, 2}) is some real number. Moreover, the above constraints imply
that P ({1}) = 1

2
and that P ({i}) = P ({j}) for any i, j ≥ 2.26 Now suppose

that P ({2}) is some real number x. By Regularity, x > 0. However, then
Finite Additivity entails that there is some integer n > 2 such that P ({2} ∪
{3} ∪ . . . ∪ {n}) = (n− 1)x > 1. This violates the Euclidean principle since
({2} ∪ {3} ∪ . . . ∪ {n}) ( Ω, for any integer n > 2, yet P (Ω) = 1. Hence, it
must be that P ({2}) is infinitesimal.

Finally, by the ratio formula,

P ({2}|{1, 2}) =
P ({2} ∩ {1, 2})

P ({1, 2})

=
P ({2})

P ({1}) + P ({2})
,

26Constraint (a), together with Normalization and Finite Additivity, implies that
P ({1}) = P ({2, 3, 4, . . .}) = 1

2 . Additionally, by the ratio formula for conditional proba-
bility, constraint (b) implies that P ({i}) = P ({j}) for any i, j ≥ 2.
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which must be infinitesimal since P ({1}) = 1
2

and P ({2}) is infinitesimal.
But we saw above that P ({2}|{1, 2}) is a real number. Contradiction.

By contrast, as I show in the Appendix, there exists a QP-space that can
represent the above scenario. Although the Non-Archimedean Continuity
axiom of NAP (ironically) rules out scenarios in which one atomic event
is infinitesimally probable relative to another atomic event, there are no
analogous axioms in QP that rule out such scenarios.

6.2 Proper-class-sized sample spaces

Consider the following probabilistic scenario:

God picks a set at random.27

Formally, this is a scenario 〈Ω, S, C〉 that is characterized as follows:

1. Ω = {x|x is a set}.

2. S = {{x}|x is a set} ∪ {Ω}.

3. Probabilistic constraints C.

(a) For any sets x, y: {x}|Ω ≈ {y}|Ω.

Note that the collection Ω of all sets is a proper class—that is, a collection
that is ‘too large’ to be a set. Because NAP is formulated in set-theoretic
terms, it cannot represent any probabilistic scenario whose sample space is
a proper class. Moreover, it is unclear whether NAP can be easily modified
to represent such a scenario, as NAP is formulated using essentially set-
theoretic machinery like free ultrafilters and the axiom of choice. Thus, NAP
cannot represent the above scenario, even though it seems to be conceptually
possible.28

Although I formulated QP in set-theoretic terms in Section 4.1, it is easy
to reformulate QP in class-theoretic terms. For example, the union of two

27For definiteness, suppose that God picks a ZF set at random. This scenario is perhaps
the maximal generalization of the so-called ‘de Finetti lottery’, which may be thought of
as a scenario in which God picks an integer at random. See Bartha [2004] for discussion
of the latter.

28At least, insofar as we assume that it is coherent to quantify over all sets. See Rayo
and Uzquiano [2006] for potential worries about this assumption.
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classes A and B is simply the class that contains each element of A and
each element of B, and the complement of A with respect to Ω is the class
that contains the elements of Ω that are not in A. We may then define a
class-theoretic notion of a Boolean algebra and understand the axioms of
QP accordingly. The only axiom that requires additional care to reformulate
is Qualitative Perfect Additivity, which involves the assumption that
one collection has a greater cardinality than another collection. Although
‘cardinality’ is an essentially set-theoretic notion, we can reformulate this
axiom with the stipulation that collection A is ‘larger’ than collection B just
in case: (i) A is a proper class and B is not or (ii) A has a greater cardinality
than B. In the Appendix, I show that QP can be reformulated in class-
theoretic terms so as to ensure that there is a QP-space that can represent
the above scenario.

The above probabilistic scenario is, admittedly, a rather artificial one.
Nonetheless, proper-class-sized sample spaces are clearly relevant to episte-
mology. In particular, for any cardinality κ, it seems epistemically possible
that there exist exactly κ-many things.29 Since the collection of all cardi-
nalities is a proper class, it is plausible that epistemic space—that is, the
collection of all epistemic possibilities—is also a proper class. Thus, if we
wish to do probabilistic epistemology in a manner that takes into account
the totality of epistemic space, it is crucial that our epistemology employ a
theory of probability that allows for proper-class-sized sample spaces. QP
appears singularly suited to this task.

7 Conclusion

Infinitesimal probability has long enjoyed a prominent niche in the philosophy
of probability. In this paper, I have shown that many of the philosophical
purposes infinitesimal probability has been enlisted to serve can be served
by appealing instead to qualitative probability—in particular, qualitative
conditional probability. Moreover, I showed:

• QP satisfies various theoretical desiderata more simply and perspicu-
ously than NAP.

• QP has comparable—if not greater—representational power than NAP.

29See Chalmers [2011, p. 90] and Pruss [2013, pp. 236–237] for arguments to this effect.
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I close with some open questions about the relation between qualitative prob-
ability and infinitesimal probability.

First, as I discussed in Section 4.3.3, several notable infinitary proba-
bilistic scenarios that can be represented by NAP functions can also be
represented by QP-spaces. Is it the case that every probabilistic scenario
that can be represented by a NAP function can also be represented by a
QP-space? If so, this fact—in conjunction with the fact (cf. Section 6)
that some probabilistic scenarios can be represented by QP-spaces but not
by NAP functions—would establish that QP has strictly greater representa-
tional power than NAP.

Second, it remains to be seen whether any representation theorems con-
necting NAP functions to QP-relations can be established. For example, for a
given NAP function P , is there a QP-relation � such that P (A|B) ≥ P (C|D)
if and only if A|B � C|D? Prior investigations suggest that some such repre-
sentation theorems may be had. In particular, Hawthorne [2016] establishes
representation theorems connecting qualitative conditional probability rela-
tions that satisfy Koopman’s axioms—that is, QP1–QP9—to Popper func-
tions. Additionally, Brickhill and Horsten [unpublished] prove a representa-
tion theorem connecting Popper functions to NAP functions. Given these
connections, it seems reasonable to expect systematic connections among
NAP functions and QP-relations as well.

Third, as I said in Section 6, some conceptually possible probabilistic
scenarios can be represented by QP-spaces but not by NAP functions. It
remains to be seen how other theories of numerical probability that allow
for infinitesimals fare in this respect. For example, it may be that a theory
of probability that employs Conway [1976]’s surreal numbers is better suited
than NAP to represent the scenario of Section 6.2, as there are proper-class-
many surreals.

Finally, infinitesimal probability has long been subject to criticism.30 Do
analogues of standard objections to infinitesimal probability apply to QP?
Prima facie, some such objections do not carry over to QP. For example,
objections—such as those of Hájek [2003b, Section 5] and Easwaran [2014a,
Section 5.4]—that stem from the essential use of the axiom of choice to show
the existence of infinitesimals do not straightforwardly carry over to QP. This
is because the axiom of choice is generally not needed to define QP-spaces.
(In the Appendix, I only employ the axiom of choice to define total QP-

30See Benci et al. [2016, Section 4] for notable objections.
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spaces.) However, it remains to be seen whether other objections do carry
over to QP and, if so, whether QP can be adequately defended in light of
them.

8 Appendix

I do four things in this Appendix. First, I prove a theorem, QP Repre-
sentation, that states general conditions under which a given probabilistic
scenario is representable by a QP-space. Second, I show that QP Repre-
sentation entails that the five probabilistic scenarios of Section 4.3.3 are all
representable by QP-spaces. Third, I show that total versions of these five
scenarios—that is, versions of these scenarios that include Complete Com-
parability as a constraint—are all representable by QP-spaces. Fourth, I
show that the two scenarios of Section 6 are representable by QP-spaces as
well.

8.1 QP Representation

In this section, I state and prove the key representation theorem of the paper.
Here is the theorem.

QP Representation. Suppose 〈Ω, S, C〉 is a probabilistic scenario that sat-
isfies the following conditions:

1. Each constraint in C has one of the following forms:

(i) For every ω ∈ Ω, {ω} ≈rω {ω0}, where ω0 is a particular member
of Ω, r is a non-negative real number, and rω0 = 1.

(ii) For particular a, b ∈ S such that a ⊆ b, a ≈r b, where 0 ≤ r ≤ 1.

(iii) For particular a, b ∈ S such that a ⊆ b, a ∼r b, where 0 ≤ r ≤ 1.

Additionally, C does not contain constraints of both forms (ii) and (iii).

2. For any b ∈ S, let Sb = {a ∈ S such that a ≈r b or a ∼r b for some r}.
Then, Sb is a semi-algebra over Ω.

3. There is some non-negative, (possibly partial) real-valued function f

on S such that, if a ⊆ b and (a ≈r b or a ∼r b), then r = f(a)
f(b)

.
Moreover, f is only defined on finite subsets of Ω or infinite subsets of
Ω of cardinality |Ω|.
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4. Let a ∈ S. Suppose a = (a1 ∪ . . .∪ an), for some positive integer n and
disjoint ai ∈ S. Further, suppose, for each ai, that there is some real
number ri such that ai ≈ri a or ai ∼ri a. Then, r1 + . . .+ rn = 1.

Then, C can be characterized by a collection CQP of constraints of the form
a|b � c|d. Moreover, 〈Ω, S, C〉 can be represented by a QP-space 〈Ω′,�′〉 in
the following sense:

1. Ω ⊆ Ω′.

2. �′ satisfies CQP .

NOTE. The proof of this theorem, and proofs of the other results
mentioned above, are still under construction.
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de Finetti, B. [1937]: ‘La Prévision: Ses Lois Logiques, Ses Sources Subjec-
tives’, Annales de l’Institut Henri Poincaré, 17, pp. 1–68.
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